## **American Automobile Manufacturers Association**





General Motors

RECEIVED

JUN 2 6 1996

FEDERAL COMMUNICATIONS COMMISSION
OFFICE OF SECRETARY

June 26, 1996

DOCKET FILE COPY ORIGINAL

Mr. William F. Caton, Acting Secretary Federal Communications Commission 1919 M Street N.W., Room 222 Washington, DC 20554

Dear Mr. Caton:

RE: Reply Comments to Federal Communications Commission, Docket 94-124; RM-8308; FCC 95-499 - Operation Above 40 GHz -Second Notice of Proposed Rule Making (NPRM)

The American Automobile Manufacturers Association (AAMA) submits the following reply comments for Federal Communications Commission (FCC) review and consideration. AAMA would like to emphasize that we continue to strongly support international harmonization of frequency bands for vehicular radar as the public would benefit from a uniform frequency assignment.

The AAMA reply comments are divided into three sections. The first section relates to issues addressed as potential concerns by the Radio Astronomy community. The second section of our comments provides US Department of Transportation data for the number of accidents which could be reduced when vehicles are equipped with collision avoidance devices. The third section responds to a request to change the peak-to-average ratio and sets forth concerns related to mandated design specifications rather than performance specifications.

No. of Copies roo'd 04 13 List ABODE 08T

HEADQUARTERS

DETROIT OFFICE

AAMA June 26, 1996 Operation Above 40 GHz Reply Comments Docket No. Et 94-124; RM 8308; FCC 95-499

AAMA submits that vehicular radar is an emerging technology and commercial test equipment is not presently available to measure the power levels proposed by the Radio Astronomy community. Technology will develop over the next few years for both system and instrumentation development. In the interim, AAMA urges the FCC not adopt any rule more stringent than the proposed level of 1000 pW/cm<sup>2</sup> above 200 GHz.

Please contact me at the Association (313) 871-6334 if you require additional information concerning any aspect of our comments.

Sincerely,

Vann H. Wilber, Director

Safety and International Department

Engineering Affairs Division

1. Reply to Comments Submitted by Radio Astronomy Community

Comments were filed by the National Academy of Sciences' Committee on Radio Frequencies

(CORF) in behalf of the Radio Astronomy community AAMA recognizes the importance of the

work being done by Radio Astronomers and does not wish to impede their work. However,

AAMA does not agree with CORF's recommended limit for the following technical and public

policy reasons.

The manner in which the Radio Astronomers calculated the approach distance and subsequent

effect of the radar system is overly pessimistic. Based on the limits of automotive radiated

emissions in the standards of the Special International Committee on Radio Interference (CISPR

12) and the Society of Automotive Engineers Standard (SAE) J551-2, at 250 meters the vehicle

engine radio frequency noise would exceed the International Telecommunications Union (ITU)

interference limit by 15 to 20 dB (based on a vehicle just meeting the emissions limit at 100 MHz

and extrapolating by  $\sin(x)/x$  to 230 GHz). In addition, the first draft of the IEEE Vehicular

Radar and Radio Astronomy Document AAMA received through the Institute of Electrical and

Electronic Engineers (IEEE), VRS-96-6 used a distance of one kilometer as typical of a control

zone around a site. This extension of distance would result in the vehicle emissions being below

the recommended ITU limits. The net results would change the calculated interference signal

<sup>1</sup> Vehicular Radar and Radio Astronomy, IEEE VRS-96-6; IEEE Vehicular Radar Standards Subcommittee,

February 28, 1996, Boulder, CO; INTERNET Address for the Paper:

http//www.its.bldrdoc.gov/~allen/IEEE VRS/VRS home.html

level to 55 pW/cm<sup>2</sup> for the broadband case and 74 pW/cm<sup>2</sup> for the narrowband case, as a potential minimum level for noninterference from vehicular radars.

In their calculations the Radio Astronomers also assumed that the transmitter power of the vehicle radar is spread over 300 MHz (three times the 100 MHz sweep they assumed). If a Fourier transform is done on this wave form, it can be shown that only half the energy is in that 300 MHz band. The remainder is spread over an additional 600 MHz divided evenly about the first 300 MHz. Using the Radio Astronomers calculations, the 74 pW/cm² lower level now becomes 148 pW/cm² as a background level required to prevent interference.

As AAMA pointed out in our comments to Docket 94-124. FCC 95-499, only moving vehicles should be included in this type of calculation since the radar must reduce its output level by 25 dB when the vehicle is stationary. As such, assuming the maximum energy of the third harmonic is radiated in the same direction as the fundamental frequency, the time of illumination of the radio astronomy antenna by the vehicle radar would be in seconds compared to the thousands of seconds used by the radio astronomy community for an observation.

Additionally, AAMA questions how many sensitive measurements can be made while the sun is visible in the sky since it is a very powerful radio noise source. If measurements cannot typically be made during daylight hours, the argument of high vehicle traffic density is

questionable especially at radio astronomy sites, such as Kitt peak, considering that locations of

measurement facilities and access roads which are controlled by the radio astronomy community.

The issue of vehicle radar maintenance was raised in the CORF comments. AAMA would like

to put this concern to rest. A system as complex as the vehicle radar will not be designed to

require maintenance during its lifetime. The automotive repair infrastructure does not have, nor

is every likely to have, the expertise to service this type of system. Any defective unit will

simply be replaced. Systems that are damaged or otherwise misaligned by an accident (which

such radar system are intended to reduce) will result in an inoperative system, which its

diagnostics should detect and warn the driver. This is the current strategy used by motor vehicle

manufacturers for the air bag systems now in use and this system is working very

effectively. Vehicle operators are given notice of a defect/failure via the instrument cluster and

the vehicle is taken to the dealer and the unit replaced.

The issue of proliferation was raised implying a parallel to the problem of optical observatories

being blinded by large city night lightning. AAMA considers this to be a false parallel. If, as the

radar astronomy community suggests, the whole US vehicle population was equipped with a

radar system, the total power being delivered to the antennas would be 2000 kW or 2.1x10<sup>-4</sup>

pW/cm<sup>2</sup> averaged over the US in the subject band (FCC rules effectively limit the input power to

10 mW). This is less power than one medium size city would consume for lighting.

The CORF comments also state that equipment for measuring the emissions in the 230 GHz band

exist commercially and that their suggested 2 pW/cm<sup>2</sup> limit can be objectively and repeatibily

measured. As noted by both AAMA and GM/Hughes, attempts to locate the referenced

commercial measurement equipment have been futile to date. An attempt to make measurements

at Kitt Peak using radio astronomer instrumentation was less than successful.

CORF implied that unless very strict limits are applied, the effectiveness of the Millimeter Wave

Array could be compromised. One advantage of an array is the ability to use correlators (which

have been used in radio astronomy for more than 30 years) which substantially reduces the

effects of interference<sup>2</sup>.

It has not been shown that the 2 pW/cm<sup>2</sup> limit can be met at a cost that will be economically

viable by the motoring public. Moreover, the absence of adequate measuring equipment and test

procedures for measuring 2 pW/cm<sup>2</sup> at 231 GHz precludes design verification.

A 2

pW/cm<sup>2</sup> limit would thus deny the public the safety and other benefits of vehicle radar systems

as detailed in the comments that follow.

<sup>2</sup> An Automatic Radio Interference Monitor for the National Radio Astronomy Observatory Very Large Array, C.C.

Janes et. al., 1995 IEEE International Symposium on Electromagnetic Compatibility, page 411.

2. Potential Safety and Other Benefits of Collision Avoidance Devices

Sophisticated vehicle collision avoidance devices on motor vehicles have the potential to reduce

highway traffic deaths, injuries, and associated costs to society. This section, using United States

Department of Transportation generated data, reviews and highlights potential public benefits of

vehicular radar systems.

Since 1991 the National Highway Traffic Safety Administration<sup>3</sup> (NHTSA) has had a

concentrated program to facilitate the development and deployment of effective safety-related

systems as part of the Department of Transportation Intelligent Vehicle Highway Systems

(IVHS), recently renamed the Intelligent Transportation Systems, or ITS program. A key

responsibility of NHTSA is to demonstrate that advanced technology can practicably enhance the

collision avoidance performance of motor vehicles.

These advanced safety related systems include, but are not limited to: 1) Intelligent Cruise

Control, 2) Forward Crash Avoidance Systems. 3) Forward Looking Automotive Radar Sensors,

4) Vehicle Lateral Position Data Collection and Analysis, 5) Automatic Braking for Heavy

Vehicles.

<sup>3</sup> Department of Transportation, National Highway Traffic Safety Administration (NHTSA) Paper 96-S2-O-09;

Experimental Safety Vehicle Conference, May 14, 1996. August Burgette, Office of Crash Avoidance

AAMA June 26, 1996 Operation Above 40 GHz

Reply Comments

Docket No. Et 94-124; RM 8308; FCC 95-499

Collision avoidance technology applied to motor vehicles will significantly reduce crashes and

subsequent fatalities and injuries according to the NHTSA paper.

According to the NHTSA calculations presented in their paper "Status Update of NHTSA's ITS

Collision Avoidance Research Program, (Paper 96-S2-O-09)" implementation of collision

avoidance systems will result in the following public benefits:

roadway departure crashes will be reduced by 296.000 per year

• lane change/merge crashes will be reduced by 38,000 per year

• rear-end crashes will be reduced by 759,000 per year

if collision avoidance techniques were applied to motor vehicles on a 100% basis.

The National Safety Council<sup>4</sup> estimates a total cost of \$176.5 billion dollars resulting from motor

vehicle accidents for calendar year 1994. The total number of motor vehicle accidents

in 1994 was 6,492,000 according to the US Department of Transportation<sup>5</sup>.

The sum of relevant crashes (e.g. those that crash avoidance systems would benefit) shown in

NHTSA paper 96-S2-O-09. Table 5 is:

<sup>4</sup> National Safety Council, Accident Facts, 1995 Edition

<sup>5</sup> Traffic Safety Facts 1994: A compilation of Motor Vehicle Crash Data from the Fatal Accident Reporting System and the General Estimates System; National Highway Traffic Safety Administration; National Center for Statistics

and Analysis; U.S. Department of Transportation, Washington, D.C. 20590, August 1995

AAMA June 26, 1996 Operation Above 40 GHz Reply Comments Docket No. Et 94-124; RM 8308; FCC 95-499

Roadway Departure 1,200,000

Lane Change/Merge 200,000

Rear End Crashes 1,700,000

TOTAL 3,100.000

According to NHTSA paper 96-S2-O-09, Table 5, the number of crashes reduced as a result of intelligent highway devices. (e.g. vehicle radar), is:

Roadway Departure 296,000

Lane Change/Merge 39,000

Rear End Crashes 759,000

TOTAL 1,067,000

Assuming a ratio between total accidents as given by the US Department of Transportation, relevant accidents benefiting from crash avoidance technology, and the cost to the public for motor vehicle accidents, an estimate of benefit, using these publicly available data, can be calculated.

Effectiveness =  $\frac{\text{Number of Reduced Crashes}}{\text{Number of Reduced Crashes}}$  =  $\frac{1,067,000}{\text{1000}}$  = 0.34

of Crash Total Number of Relevant Crashes 3,100,000

**Avoidance Devices** 

AAMA June 26, 1996 Operation Above 40 GHz

Reply Comments

Docket No. Et 94-124; RM 8308; FCC 95-499

According to NHTSA 39% of towed vehicle accidents are frontal impacts<sup>6</sup> and assuming that the

majority of costs associated with vehicle accidents are from frontal crashes we estimate that the

major benefit of crash avoidance devices would be for frontal crashes.

of Accidents

Assuming that the total effectiveness for vehicle crash avoidance devices has a direct relationship

to reducing the cost of accidents, it can be shown that the National Safety Council motor vehicle

accident cost data of \$176.5 billion could be reduced by

Reduction in Cost /Year

**Vehicles with Collision Avoidance Equipment** 

to Society by Equipping = Total Cost \* Effectiveness \* Frontal Crash % \* Number of Relevant Collisions

**NHTSA** 

Total Number of Collisions

or:

Reduction in Cost/Year

**Vehicles with Collision** 

**Avoidance Equipment** 

to Society by Equipping = \$176.5 billion \*0.34 \* 0.39 \* 3.1 Million = \$11.3 billion

6.4 million

The \$11.3 billion per year estimated benefit includes not only vehicle damage but also medical

care and loss of income. These are substantial potential benefits to the United States public

when collision avoidance devices are incorporated into motor vehicles. AAMA urges the

Federal Communications Commission to consider the benefits to society when making decisions

on the performance characteristics of motor vehicle radar systems. We recognize that radio

<sup>6</sup> National Accident Sampling System Crashworthiness Data System 1991-1993, U.S. Department of Transportation,

National Highway Traffic Safety Administration, DOT HS 808 298. August 1995

astronomy is important to the understanding of the universe, but we also recognize that the potential for reducing human injury and fatalities should be an important part of a public policy

decision.

The benefits from equipping vehicles with collision avoidance devices may even be greater than that provided in the above calculations. At the Intelligent Transportation System annual meeting in Houston, Texas, Mr. Philip Recht, Deputy Administrator of the National Highway Traffic Safety Administration said: "we believe we could save \$23 billion per year in crash-related costs" (emphasis added).

## 3. Comments on the Hewlett-Packard Company (HP) Comment to Docket 94-124, FCC 95-499

While the HP comments on changing the peak-to average ratio do not directly affect AAMA radar systems, their request could set a precedent which would at a later date. The effect of the request is to eliminate all types of emissions except FM. Any waveform modulation such as pulse, AM, etc. would have their effective range limited. Since vehicle radars may use other modulation schemes than FMCW, extension into the vehicle radar band would limit design innovation. If the FCC should rule favorably on the HP request, it should be stated that this is a

<sup>&</sup>lt;sup>7</sup> Inside ITS April 22, 1996, NHTSA Attempts to Project Benefits of Anti-Crash Devices; page 9

AAMA June 26, 1996 Operation Above 40 GHz

Reply Comments

Docket No. Et 94-124; RM 8308; FCC 95-499

very restricted exception. AAMA submits that the FCC should set performance specifications

rather than design specifications.

**Summary** 

AAMA believes that the goals of the Radio Astronomy community can be met even when

vehicle radar devices are installed and used by a multitude of drivers. We also believe that the

data provided by the United States Department of Transportation showing potential benefit of

collision avoidance devices on vehicles should be considered by the Federal Communications

Commission.

As vehicular radar technology is developed over the next several years, commercially available

test equipment may become available for making repeatable, reliable, objective measurements at

these higher frequencies and low power levels. After adequate measurement equipment and

proper techniques develop, and field experiments demonstrate whether additional requirements

are needed, then rational decisions on more stringent levels of protection above 200 GHz can be

made. In the interim, AAMA urges the FCC not adopt any rule more stringent than the proposed

level of 1000 pW/cm<sup>2</sup> above 200 GHz.